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Rayleigh-Taylor-Like Instability in
Near-Critical Pure Fluids1

B. Zappoli,2 S. Amiroudine,3,4 and S. Gauthier5

The hydrodynamic stability of a thermodiffusive interface in a near-supercritical
fluid is studied. The Navier-Stokes equations written for a van der Waals gas
above its critical point are solved by means of a finite volume numerical
method. The growth rate of the fluctuations shows that there exists a cutoff
wave number beyond which the short wavelengths are stabilized by diffusion.
The good agreement between the obtained values and recent theories for miscible
fluids confirms that a near-critical fluid subjected to a thermal gradient may
develop a gravitational instability for which the density gradient is driven by
thermal diffusion and large compressibility.

1. INTRODUCTION

The weak diffusivity of near-critical pure fluids and their large compressibility
lead to very specific mechanisms of thermal homogenization. The piston
effect, which is of a thermoacoustic nature, allows for a very fast thermal
homogenization under zero gravity conditions although the thermal dif-
fusivity is very small [1-4]. Under normal gravity conditions and for a
side-heated square-shaped cavity, we have recently shown that this
mechanism is still responsible for heat equilibration [5]. We are interested
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here in a different situation, although it is also linked with the storage of
cryogens and more generally to the stability of diffusion fronts in miscible
fluids.

When one performs the numerical modeling of a bottom-heated cavity
filled with a supercritical fluid (Rayleigh-Benard configuration), the lateral
walls of which are insulated while the top wall is thermostated at the initial
temperature, thermal plumes arise at the bottom wall. As the bulk fluid is
homogeneously heated by the piston effect, a cooling thermal boundary
layer forms along the upper wall [6]. This layer of fluid is heavier than the
fluid located below and thus gives birth to droplets as shown in Fig. 1. The
mechanism of formation of these droplets looks like a Rayleigh-Taylor
instability. We thus oriented our investigations towards a front diffusion
instability, analogous to the one encountered in miscible fluids [7-10]. We
have considered a simpler situation (see Fig. 2) in which the upper half of
a square-shaped isobaric cavity of infinite extension filled with a near-
supercritical fluid at rest is some mK cooler than the bottom half. The top
and bottom walls are at constant initial temperature. The aim of this work
is to perform a numerical stability analysis of the thermal diffusion inter-
face which is present between the two halves of the cavity. To this end, we
use a technique which consists of studying the dynamics of growth of
fluctuations of a fluid property at the interface.

Fig. 1. Temperature difference (T' — T'0) in K for a square-
shaped cavity heated from below initially at 1 K from the criti-
cal point and 8.3 s after a 10 mK increase in temperature, from
Ref. 6.
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Fig. 2. The two-dimensional model.

2. MATHEMATICAL MODEL

The model is identical to the one used in Ref. 5, and is merely repeated
here. The Navier-Stokes equations are those describing a Newtonian,
viscous and hypercompressible pure fluid. For the equation of state, we
have chosen to use the van der Waals equation, although it is well known
that it does not correctly describe the critical coordinates, namely it leads
neither to the correct critical pressure nor to the correct critical exponents
(i.e., the exponents describing the critical divergence of transport properties).
If necessary, i.e., when close enough to the critical point or for comparisons
with experimental results, it is possible to use the restricted cubic model of
Ref. 11.

Pressure is normalized with respect to that for an ideal gas at critical
conditions. The other variables are referenced to their critical values. The
governing equations are written in the following form:

where O = e y ( y — 1 ) [ v i , jVj, i + vi, jV i , j — 2 v i , iv j , j] is the viscous dissipation
rate and e is a small parameter defined by e = Prt'a/t'd, where t'd = L'2/K'0 is
the characteristic heat diffusion time for the ideal gas (L' is the charac-
teristic length and K'0 is the thermal diffusivity) and t'a = L'/c'0 is the charac-
teristic time of acoustic phenomena [c'0 = (yR'T' c) 1 / 2 represents the sound



velocity]. It must be noted that t'd is not the characteristic time for diffu-
sion in a supercritical fluid. Taking into account the vanishing thermal
diffusivity of near-critical fluids, this characteristic time would be of order
t'd/TT1/2, which is even longer.

The quantity Pr = V'0/K'0 is the Prandtl number (where v'0 is the
kinematic viscosity) and Fr = c'0/L'g'0 is the acoustic Froude number (L' is
the characteristic length, g'0 is the acceleration of gravity, and c'0 is the
sound velocity). Ail the zero subscripts represent properties for an ideal
gas. The following thermal and transport coefficients are considered:

where L, Cv, and u are, respectively, the heat conductivity, the specific heat
at constant volume, and the dynamic viscosity relative to their ideal gas
values. The van der Waals equation can be written in the following
nondimensional form:
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where a = 9/8 and b = 1/3 are given by the expression of the critical coor-
dinates.

The fluid is initially at rest, and stratification is neglected since the
distance to the critical point is greater than 1 K. The initial conditions for
the upper layer are

where (T'1 - T'C)/T'C = TT << 1, and T' and T'c are, respectively, the initial
and critical temperatures; the variables with a prime have dimensions. For
the lower layer, the initial conditions are such that the density is given
while the temperature is determined in such a way that the pressure is
homogeneous within the whole cavity:



where A is the amplitude of the perturbation (A = 10-2).

3. NUMERICAL METHOD

The governing equations are numerically solved by a finite-volume
method with a SIMPLER-type algorithm [12, 13]. The numerical scheme
is of first order in time, and the discretization in space uses the power lower
scheme [12]. A nonuniform staggered grid is used to take into account the
presence of huge initial gradients at the interface. The grid is uniform in the
x direction. The acoustic filtering procedure is used to reduce computa-
tional time [5, 13], and the calculations are performed on the piston effect
time scale (which is between the acoustic and the diffusion times defined
in Section 2); on that time scale, the pressure can be separated into two
parts, one of which is homogeneous in space plus a small nonhomogeneous
acoustic perturbation which can be filtered at first order. The dynamics of
the growth of the fluctuations, that is to say, the determination of rate of
growth D ( k ) , where k is the wave number of the initial perturbation, is
determined in the following way: after sampling two values of a field
variable (the velocity, for example) at a grid point for two different times
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where AS corresponds to the given density difference between the two
layers. On the horizontal walls, the following boundary conditions are
considered:

Periodic conditions are considered on lateral boundaries, i.e., for any field
variable O (temperature, velocity), the following relation holds at all times:

where L represents the wavelength of the initial perturbation, the dynamics
of which are to be studied. When the thermal constraint is suppressed,
thermal diffusion which is the driving force of the evolution begins to
operate. As density is related to temperature via the equation of state, a
diffusive interface forms which is similar to the one which would form
between two miscible liquids. The fluctuations whose dynamics are to be
studied are introduced with the form of an initial nonzero velocity written as



4. RESULTS AND DISCUSSION

The calculations are performed for a cavity filled with CO2 at critical
density, the temperature of the upper part of which is 1 K above the critical
temperature. This value determines the value of the transport coefficients,
the other variations being only perturbations. The density difference
between the upper and lower parts of the cavity is directly related to the
temperature difference and compressibility. Two nondimensional density
differences are studied: Te = 10 -2 and 10- 3 and they correspond, respec-
tively, to temperature differences of 15.2 and 1.49mK. The values of the
kinematic viscosity and thermal diffusivity at 1 K above the critical point
are v = 4.48 x 10-4cm2. s-1 and K = 0.86 x 10-4 cm2 .s-1.

The values of D ( k ) are shown on Fig. 3. One can point out first that
there exists a cutoff wave number beyond which the small wavelengths are
damped by diffusion. This is in agreement with the conclusions of recent
work [7, 9, 15], which, taking into account both viscosity and diffusion,
make it necessary for a cutoff wave number to be equal to [9]:

where D is the interdiffusion coefficient for miscible fluids (which is
replaced, in our case, by the thermal diffusion coefficient), g is the accelera-
tion of gravity, and R = (p1 — p 2 ) / ( p 1 + P2). Table I compares the cutoff
values obtained by the present numerical simulations with the ones deduced
from the above formulas.
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t1 and t2, one determines D ( k ) in expressing the velocity as an exponential
function of time,

from which one can extract D ( t , k)

The value of D ( k ) which corresponds to the linear regime under study is
considered to be the one corresponding to the plateau zone of the time
history of D ( t ) for which A1 and A2 are independent of time.
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Figure 4 shows the temperature field at a given time (t' = 1 s) for an
initial perturbation wavelength L = 0.1 that gives a high growth rate. It
must be emphasized here that the values of the Schmidt number for the crit-
ical fluid are of order 10, whereas they are of order 103 for normal miscible
liquids. This is due to the strong decrease of the kinematic viscosity; the
thermal diffusivity of the critical fluid, although weak for a gas, is two
orders of magnitude higher than mass diffusion in miscible liquids. The
length scale associated with the micro-drops formed by the instability is
thus small and it appears that the thermal homogenization process of a
supercritical fluid on ground may undergo a micro-mixing phase: micro-
drops are formed that then relax by diffusion. The measured homogeniza-
tion time may thus appear much smaller than the one calculated on the cell
length scale. The present calculations need to be completed by a systematic
study as a function of the distance to the critical point as well as by a linear
stability analysis [16].

Fig. 3. Instability growth rate as a function of the wave
number for Tp = 0.01 (4.678 kg . m - 3 ) and Tp = 0.001
(0.4678 kg . m - 3 ) ; the initial temperature is 1 K above the
critical point.

Table I. Cutoff Wavelength as a Function of
Density Difference

Lc (mm)

Tp(kg . m -3)

4.678
0.4678

Kurowski et al. [9]

0.258
0.557

Numerical

0.280
0.434
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Fig. 4. Temperature difference 1 s after the thermal constraint has been
suppressed (the wavelength of the initial perturbation is L' = 1 mm).
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